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Abstract. Generalizations to a base q of the Appell and Lauricella hypergeomekic functions 
an studied within Lhe hamework of the representation theory of quantum algebras of type A.. 
This allows deriving various identities and formulae involving these q-functions. 

1. Introduction 

Quantum algebras and groups constitute very powerful algebraic tools for studying many 
physical models, in particular those that involve discrete space and/or time. The literature 
dealing with their applications is by now very large, and ranges over many different fields, 
from mathematical physics to condensed matter physics.11 

More specifically, quantum algebras are deformations with a complex parameter q 
of the universal enveloping algebras of classical Lie algebras [4,5]. Like their classical 
counterparts, they often arise in physical models as symmetry algebras, simplifying the 
analysis of the dynamics of these models and allowing in many instances for a complete 
solution [6-8]. 

It is well known that the representation theory of the classical Lie algebras gives 
a unifyiig algebraic setting for many special functions of mathematical physics [9-121. 
Quantum algebras play a similar role for generalizations to a base q of these functions, the 
so-called q-special functions [13]. Though unfamiliar to most physicists before the advent of 
quantum groups, the q-functions are now playing a fundamental role in the study of quantum 
algebra symmetries. In fact, these functions naturally arise whenever such structures are 
relevant to the description of physical systems; in particular, n-point correlation functions 
can be expressed in terms of q-hypergeometric functions in n-variables [14-18]. 

Motivated by this, here we shall study multivariable q-special functions withii the 
quantum algebra framework. We shall provide an interpretation of these functions along the 
lines developed in the case of the single variable basic hypergeometric functions [19-35]. 
Using this approach, various identities and properties for these functions will be derived. 

After a section where the notations and definitions used throughout the paper are 
inkoduced, we present in section 3 results on the representation theory of Uq(sl(n + 3)). 
In the following section, we study a q-generalization of the Appell function, a two-variable 

8 Supponed in pM by the National Sciences and Engineering Research Council NSERC of Canada and the Fonds 
FCAR of Qu6bec. 
II Par instance, bec the various ccntributions in [1-31. 

0305-4470/94~06781+17$19.50 @ 1994 1OP Publishing Ud 6781 



6182 R Floreanini et a1 

version of the Heine hypergeomehic series, and its connection with the quantum algebra 
Uq(s1(5)). The q-Appell functions appear both in matrix elements of certain operators in 
Uq(s1(5)) and also as basis vectors, in specific irreducible representations of subalgebras of 
U,(sl(S)). Section 5 is devoted to an n-variable generalization of the Heine hypergeometric 
series, the extension to a base q of the Lauricella function F D .  In analogy to the q-Appell 
series, this function proves to be connected with the representation theory of U,(d(n -t 3)). 
Only the results are given in this case, since the derivations are similar to those involving 
the q-Appell functions. 

Let us stress that the techniques described here are essentially independent of 
convergence criteria. The relations and formulae involving the q-Appell and q-Lauricella 
functions obtained in sections 4 and 5 should be looked at as identities between formal 
power series; it could happen that these converge over a finite radius or only when the 
series terminate. 

2. Notation 

We start with a few formulae in q-analysis that will be used in the following. In our 
approach, an important role is played by the following two q-exponential functions [13]: 

(2.la) 

(2 . lb)  

where, for a and IY arbitrary complex numbers, (a; q). stands for the q-shifted factorial 

with 

(2.3) 

Note that e,&) Eq(-z )  = 1, and that lirr+,l- e,(z(l - 4)) = 1iq-l- E,(z(l -q ) )  = eL.  
We shall denote by Tz the q-dilatation operator which acts as 

TZ dz) = W Z )  (2.4) 

on functions of the variable z ;  out of it, the q-difference operators 

(2.5a) 
(2.56) 

are constructed. Observe that &D: + d/dz and 
also that the q-exponentials obey 

' D- + d/dz as q + 1. Notice 

(2 .W 
(2.66) 
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with A a complex parameter. 
The basic hypergeometric series & is defined [13] by 

with q # 0 when r > s + 1. Since (q-'"; 4)" = 0, for n = m t 1, m + 2, . . . , the series 
terminates if one of the numerator parameters { a i )  is of the form q-m with m = 0, 1 ,2 . .  . 
and q # 0. By the ratio test, when 0 < 1q [ c 1, the ,q5s series converges absolutely for all 
z if r Q s ,  and for IzI c 1 if r = s + 1. The particular case r = 2 and s = 1 gives the 
Heine q-series 

which in the limit q + 1- reduces to the standard Gauss hypergeometric series. 
In the following we shall consider multivariable versions of the functions defined in 

(2.7) and (2.8). One of the simplest generalizations of the Heine q-series is the basic 
Appell series OD [36]: 

For 0 141 < 1, it converges absolutely when 1x1 < 1 and IyI < 1. 
The generalization to n-variables of (2.9) gives the basic Lauricella function OD [37,38]: 

(2.10) 

where M = mi + mz + . . . + m,. Also in this case the series converges absolutely when 
lzil < 1, i = 1,2, . . . , n, for 0 < 141 < 1. In the following we shall fix q to be in this range. 
It is easy to check that the q-LauriceUa function (2.10) satisfies the following q-difference 
equations 

[(l -cT,)D: - (1 -aT2)(1 - biT,,) O D  = 0 

[(I - biTZj)D$ - (1 - b,Tz,)D:] @D = 0 

for 1 Q i Q n  

for 1 Q i c j Q n  
(2.11) 1 

where T, = c, c, ... TI.. Also notice that OD can be expressed in terms of a .+I& 
q-hypergeometric function [37,38]: 

We shall see that the series (2.10) arises in the representation theory of the quantum 
algebraU,(d(n t 3)). 
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3. The quantum algebra 4(s l (n+3) )  

The quantum universal enveloping algebra Uq(sl(n + 3)) is the Hopf algebra generated by 
the elements ki, k,;', e; and fi. i = 1,2, .  . . , n + 2. satisfying the defining relations [5] 

ki k;' = k;' ki = 1 ki kj = kj ki ki ej k,:' = 4'" ej 

together with the Serre-like relations 

[ e ; ,  ej]  = 0 = [fi, fj1 

ei ei*l - (q112 + q-'12) et eiLl ei + er*! e? = o 
for li - il > 1 

(3.2) 2 

fiz fi*l  - (ql lZ + q-'12) f i  &I fi + h*l$ = 0 

where nij is the Cartan matrix of type An+2. with aii = 2, aii+l = - 1 and aij = 0 otherwise. 
Its irreducible representations can by studied by introducing the following abstract operators 
E acting on the basis functions f.,p ,.... A.y = fe.fi.y, with 01, P I , .  . . , a, y complex numbers 
[39,401: 

(3.3) 
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The operators E generate the quantum algebra Uq(sl(n t 3)). Indeed, with the following 
redefinitions: 

i = 1,. . .,n - 1 
the relations (3.1) and (3.2) are verified. The operators E listed in (3.3) and not appearing 
in (3.6) correspond to non-simple roots. 

Let (ao, pi", yo). i = 1.2 , .  . . .n, be fixed complex numbers, not integers, and let 
a = ao + m, p; = + ni, y = yo + k ,  where (m, n; ,  k )  run over all integers. Then 
the basis functions ( f = , ~ , , ~ }  and the operators E in (3.3) define an infinite-dimensional 
irreducible representation of U&(n t 3)). In the following sections we shaU see how this 
representation gives a natural algebraic setting for the q-Appell and q-Lauricella functions. 

Let us finally point out that it is easy to construct an explicit realization of the above 
representation, using n + 2 complex variables: ( x ,  y;,  z), i = 1,2, . . . , n. In this model, the 
basis functions are 

(3.7) fu.p , .y  ( X , Y I ,  ... , Y n , i )  = x  U B I  Y1 . ' ' Y , " i  B Y  

while the elements E are expressed in terms of q-difference operators 
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where T, = TyJ Tfi . . Tym. One can easily check that the operators (3.8) acting on the 
monomials (3.7) verify the relations (3.3). 

4. The basic Appell function and U,,(sZ(S)) 

In this section we shall fix n = 2 and consider the irreducible representation (3.3) for 
Uq(s1(5)). The algebraic interpretation of the q-Appell function @D(a; b ,  b'; c; q ;  x ,  y )  
that we shall present is based on a suitable subalgebra of U,(s!(5)). Let us consider the 
following operators: E', E,. E,, E",. Together with the elements k,, and k,,  they satisfy 
the following relations: 

[ Y , E E , l  =q-'(1 - q ) ( k L 1 k y  - k u )  [E.,&"'] = q - ' ( l  - q ) k , E "  

[EU,&"]  = q-'(l  -q)k,'k,EbY 

k ,E '=qE'k ,  k, Ea = q-' E. k ,  (4.1) 

[Ea.  E U Y ]  = 0 

[ E Y Y Y ]  = 0 [E., E T ]  = 0 

k , E Y  = E Y k m  k , Y y = q E U y k a  

k, E" = E'k, 

k, EY = q E *  k ,  
k ,  E, = E. k ,  
k y E u y = q E u Y k y .  

Other choices of subalgebras are possible; a different one will be presented in the next 
section. 

In the completion of Uq(sl(5)), let us now consider the following operator: 

U ( a , b , c , d )  = Eq(uE")E,(bEYk,)EP(~EaY)eq(dE,) .  (4.2) 

Notice that in the limit q + I-, this operator reduces to an element of the goup S L ( 5 ) .  
The matrix elements of U(u,  b, c, d )  on the basis functions [ fm,p,,&,,} of the representation 
(3.3) can be computed explicitly using the definition (2.1) and various identities involving 
q-shifted factorials. They are defined in the usual way: 

u(a, b, c. d )  f0.8t.h.~ = fa~,p,,h,,I ~ a ~ y ~ , a , ( a .  b, c, d )  (4.3) 
d.,' 

where (U', 01) E cy0+Z, (y' ,  y )  E yo+& as discussed in the previous section. Notice that the 
operators E", Ea, E,, P Y  do not change the indices (@I, &) of the basis vectors fa,p,.&,,. 
This means that the matrix elements of U(u, b. c ,  d) are non-zero only for ,Si = ,SI and 
,5'; = &; for simplicity, we have suppressed the fixed indices (,SI, ,Sz) in their definition. 
The explicit computation gives 

@D(ql-"';  qY'-LY' qY-+. 94 . -d+l .  , q ;  -adq"tY-Y'-' , cd/b) 

i f y ' - y a O ,  c r - o r ' > O  (4.4a) 
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TJdV,,.,(a, b ,  ,-, d )  = q(~ ' -CL) (~ ' -~ - I ) /Z+(Y-Y ' ) ( , -Y '+( l ' - . )  

(4: q)y--U--l (4; q)p,+&-, Cld-u+Y-,' cy'-, 

(4 ;  q)y'-u'-I (n ;  4)+%+&-,' (4: q)a,-Q+y-y, ( 4 ;  q ) y , - ,  
X 

+ Y - ;  ql -n  q Y - Y ' .  94 o'--.+,-,'+l. q ;  -adq"'+Y-Y'-l 1 - 4 01' able) 
if y' - y > 0, a' - a > 0. (4.4b) 

This establishes in a simple way the connection between the basic Appell function QD and 
U&l(S)). Notice that the two formulae above are valid irrespective of the sign of a' - a, 
thanks to the following limiting formula (m and n positive integers): 

X @D(bqm-"; aqm, q-"; qm-"+l: q ;  x, q"+'x/y) .  (4.5) 
Other combinations of q-exponentials involving the generators Ea, E,, E,, Eay can also 

v"(a, b , c , d )  = E q ( d E ~ ) e q ( c E ~ Y ) e q ( b E Y k ~ ) e q ( a & a ) .  (4.6) 

be used. Of particular interest is 

The matrix elements of ;(a, b, c ,  d )  in the representation (3.3) are given by 
+- bY'-Y d u d  U,,,,,,(~, b ,  c,  4 = q(~-cr')(a-ol'-1)/2t..(y'-y) (4 ;  4)a-l (4 :  4)81+&-r 

(4: 4)u,-1 (4; q)p,+&-y' (4; 4)v-, (4; 4)u-u' 

i f y ' - y > O ,  a-a'>O (4 .74  

q 4 a ;  q a - ' t l , q Y - Y ' .  qoL-d+l; q ;  -adqY'-"-l 9 - ,'-y-u' c d P )  

- (si q)y-CT-1 (4: 4)B,+&, a.'--.+Y-,' c,'-Y 
uc,,,,ay(a, b, C ,  d )  = 

(4; d y 9 - d - i  (9; 4)J,+&-,' (q; q)s'-.+,-,' (4; q)+, 

*D(qd-Y'+l; 4u',  q Y - Y ' ;  qu'-n+,-,'+l. q;  -adqY'-"-l , qY'ab/c)  

i f y ' - y > O ,  a'-a>O. (4.7b) 

A biorthogonality relation involving two q-Appell functions can be derived by 
combining the results (4.4) and (4.7). Recalling that e&) E p ( - z )  = 1, one sees that 

or alternatively, acting on the basis vector fa.p,,b.,. that 

- 
V(U,  b ,  c , d )  U(-U, -b. -c. -d) 1 (4.8) 

z u a , y z , w ( a ,  b, c . 4  u~,my( -a ,  -b ,  -c, -4 = &-a,oS,,-y,o 
+- 

(4.9) 

with E? E (YO + Z, 7 E yo + Z, and y: - 7 2 0, p - y > 0. Substituting for the 
matrix elements U.y,&, b ,  c ,  d)  and Uq,=,(-a, -b, -c, -d) ,  the expressions ( 4 . 4 ~ )  
and (4.7~). after some simplifications and redefinitions, one arrives at the following formula 

-- 
USY 

@- y = m E Z+, (Y - E  = k E Z): 
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Another relation involving the series @ D  can be obtained by using the model (3.8) for 
the representation (3.3). In the present case, the basis functions fap,hy are expressed by 
the monomials xaypyz&zy, while the operators E", E,, & y ,  E b y  and k ,  are as in (3.8). with 
Ty = Ty,Tyl. Let us now act directly with the operator V(a,  b, c, d) on x"y?y,&zY. By 
using the definition (2.1) of the q-exponentials and with the help of Heine's q-binomial 
theorem 

(4.1 1) 

x 2+1( - ax qy-utm-l, qy-B1-h; -xzc; q 9  -bz q . t p ~ t h - y - m ) ,  (4.12) 

To proceed further, we use the following integral representation for the series 291 : 

where we have used the standard notation 
(al,az,...,~";q), = (al;q)n(az;q),...(a.;q)u (4.14) 

and where C is a suitable generalization of Barnes' contour in the complex s-plane (for 
details, see [13]). By exchanging the sum with the integral and using once more equation 
(4.11), one finally arrives at the formula 

Since the series z+&, b; q ,  z) does not converge, unless it terminates or z = 0, the 
action of U(a ,  b, c, d) on xDyp'yz&zY is ill-defined in this model, unless 01 is an integer 
greater than unity. Nevertheless, by proceeding formally one can obtain an interesting 
identity for the q-hypergeometric series @ D .  Recall the definition (4.3) for the matrix 
elements of V(a,  b, c, d) ;  in this formula insert (4.15) in the LHS, and substitute (4 .k)  for 
Umy,u,,(a, b, c, d) in the RHS. With suitable manipulations and obvious redefinitions, one 
finally ends up with the following relation involving the q-Appell function: 

(c, -Y/G q)oc 
( - x t / q z ,  4; 4)m 

(4.16) 
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Further identities for the fujction @ D  can be obtained by noting that the matrix 
elements U,~,~,,(a, b, c,  d) and Uey,aY(u, b, c, d)  themselves provide models forUq(sl(5)) 
modules. Indeed, one can check that the following q-difference operators in the four 
complex variables a, b, c and d, depending parametrically on the complex numbers CY', 

Y' 

z(">Y') (k ) - - q"T,-' T;' Td (4.17~) 
z(e'.Y')(k Y ) - - q  Y'T-' b Tc-l (4.17b) 
n('Z'*Y')(& a -  ) - 0: (4.17~) 
z(a ' .Y ' ) (&Y) = - 4 '"'T, D; (4.17d) 
&J')(&V) = -q 0; - d Tc-' D; (4.17e) 

d""')(&") = -q 0; - (d/q)(qY'-dTa T;' T;' - q"T,' T;') + q"'b T;' 0; (4.17f) 

acting on the basis functions 

f e p I & Y ( ~ 3  (U'.Y') b, c, d )  ua,y,.cty(a, b, C, d)  (4.18) 

verify the algebra (4.1). (For a hint on how the formulae (4.17) are obtained, see [261 and 
the following section.) From this realization one can get useful formulae for the function 
aD(u;  b, b'; c;  q;  x ,  y). In fact, by acting with the operators (4.17~-f) on (4.18). one 
immediately derives 

(1 - (c /q)  TTy) @D = (1 - c/q) @D(c/q) 

(1 - b'Ty) @ D  = (1 - b') @o(qb') 

(4.19) 

where @ D  stands for @ D ( u ;  b, b'; c; q;  x ,  y), and @&a) for @ D ( q  b, b'; c;  q ;  x ,  y). and 
so on. Further relations can be obtained from the explicit definition (2.9) of the series OD, 
or by starting with a subalgebra of Uq(d(5) )  different from that of (4.1): 

(4.20) 
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These relations together with those in (4.19) constitute a complete set of 'contiguity' relations 
for the q-Appell functions. In particular, it follows that this function satisfies the following 
second-order q-difference equations: 

[(1 - cT,T,) 0: - (1 - U  T,T,)(l - bT,)] b, b'; C; q; X ,  y )  = 0 

[(I - c T.T,)D$ - (1 - a  TzTy)(l - b'T,)] @ D ( u ;  b ,  b'; c; q;  x,  y) = 0 (4.21) 

[(l - b T , ) D l  - (1 - b'Ty)D:] QD(u;  6 ,  b'; c ; ~ ; x , Y )  = 0.  

The four-variable model (4.17),(4.18) can be further used to get generating and addition 
formulae for the q-Appell functions. From the general definition (4.3), one can write, 
recalling (4.18), 

where the model-independent matrix elemenrs f i ~ . u y ( ~ ' ,  b', c', d') are still given by (4.7) 
and E E ao + Z, 7 E yo + Z. 7 - y 2 0, y' - 7 2 0. To derive useful identities from 
(4.79, one needs to evaluate the LHS of this equation, i.e. to compute directly the action 
of U@, b'. c', d') on the basis functions (4.18). using the realization (4.17). 

We shall start by considering the simple case in which only the parameter d' is non- 
vanishing, U(d') = E,(d'&,). One can check that, in this case, the only non-zero matrix 
elements are 

(4.23) 

The action of Ep(d'Dd+) on f("'*Y7(u, b , c , d )  can be computed by using the following 
summation formula (Id'/dl < 1): 

E,(d' D:) d" = d" (-d'/d; q).. (4.24) 

For d' = -qd, this action can be rewritten again in terms of a @ D :  

Inserting this result, together with-the explicit expressions (4.4~)  and (4.23) for the matrix 
elements U.,y,,v(a, b, c, d) and U q , m y ( - d q )  in (4.22), with obvious manipulations and 
redefinitions one finally obtains 

(4.26) 
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where 

(4.27) 

is the q-binomial symbol. 
To get an addition formula from (4.22), one needs to consider the Eneral case where 

all the parameters a’, b’, c‘ and d’ are non-zero. The action of V(a‘, b‘, c‘, d’) on 
f ( d J ’ ) ( ~ ,  b,  c ,  d )  can not be summed in general, but only when the following conditions 
are satisfied: b‘ = -c‘d‘/q, d‘ = -qd, and b = cdjq.  In this case one can prove that 

C(a‘, c‘d, c‘, -qd)  f$Li(a.  cdjq,  c ,  d )  = q(y’-y)(a’-l)  (4; 4)a-I 
(4; 4)d-1 

X (6 4)8,+h-y (-c/c‘: 4 ) Y , - Y d u - d  (C,d)YLY 

x &,(qU.qo-Y+l; q,a’dqY-‘-’ ) 
,#+-(l,; qY’-a’, q Y - Y ’ .  , 0. , q ;  -adqd+Y-Y’-l 

(4; 4)8 ,+&-y ‘  (4; q ) y ’ - y  

(4.28) 

In deriving this result, use has been made of the q-binomial summation formula (4.11) and 
of the q-Gauss’ summation theorem: 

(4.29) 

With the help of the expligt expressions (4.40) and (4 .7~)  of the matrix elements 
U,y,m(a. cdjq,  c ,  d )  and Uiqz,ey(a‘, c’d, c’, -qd), after suitable operations, equation 
(4.22) finally becomes 

This is a simple addition formula for the q-Appell function. Concerning the convergence 
of (4.30), the remarks made after (4.15) also apply; in particular, for 2h to be convergent, 
CY must be a negative integer. 

5. The basie Laurida function and %(sZ(n+3)) 

We now generalize the considerations of the previous section to the case of q-hypergeometric 
series in many variables. Though the strategy is essentially unchanged, the computations 
are much more involved. For this reason, we shall limit the exposition to the results giving 
only indications on how these are derived. 
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The starting point is the quantum algebra U,(sl(n t 3)) in the realization given in (3.3). 
In this case also, we shall concentrate on a suitable subalgebra generated by the elements 
E", Ea, EaBiy, & F e y ,  k. and ka,. i = 1 ,2 , .  . . , n - 1. 

In the completion of U,(sl(n + 3)). consider then the following operator: 

which in the limit q -+ 1- becomes an element of the group SL(n t 3). In the following 
we shall use a shorthand notation and simply write U ( a ,  bi, q ,  d )  for the RHS of (5.1). The 
matrix elements of V ( a ,  bi, ci, d )  with respect to the basis vectors can be computed 
using (3.3). These are zero, unless the new index y' is equal to y +E.(@! - /3 j ) ;  for this 
reason we shall simply denote them as Ue+~;,afi,(a, bi, ci.d), the index y being understood. 
Explicitly one finds (0; - / 3 i  > 0)  

J J. 

@ D ( q  I-d. * q  Y-~'+Z;(B~-BV, q ~ - ~ i ;  qa-a'+l; q;  -ad/q,  bid/.) (5.2) 

where @',U) E (YO + Z, @;,pi )  E /3p + Z and y E yo + Z, i = 1 ,..., n - 1. In 
this expression, Qo(a;  b. bi; c; q ;  x ,  y i )  stands for the n-variable q-Lauricella function 
@ D ( a ;  b, bl, . . . , bn-I; c; q ;  x ,  y1, . . . , yn-l) ,  which is thus directly connected with the 
representation theory of U,(sl(n + 3)). The form (5.2) of the matrix elements, though 
derived under the assumption (Y - (Y' > 0, is valid irrespective from the sign of 01 - 01'. 

thanks to the following limiting relation (m and ki, i = 1,. . . , n - 1 ,  positive integers) 

(5.3) 
kj. This relation clearly reduces to (4.5) for n = 2. Similarly, one can 

a q m ,  q - k ; .  p - K + l .  
X Q D ( b q m - K ;  3 4; X ,  qk;+'xIYi) 

where K = 
check that the operator 

has the following mahix elements @; - pi > 0) 
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for y' = y + cj(pj - pj), and zero otherwise. 
The operator (5.4) has been chosen in such a way that - 

U ( a ,  bi, c i . 4  U(-a,  -bi .  -c i ,  -d) = 1 . 
Applying the basis vector fep,y to both sides of this equation, one finds 

(5.6) 

This gives a biorthogonality relation for the q-Lauricella function. In fact, using the explicit 
expressions (5.2) and (5.5) for the matrix elements, with suitable redefinitions one gets 

I-.'. v-a'+ZjL$-Pj), qP,-Bl+m,; @ - d - k + l ;  q ;  x ,  ,,;) x % ( q  > q  

Q~(,=; qu-y+ l ,  q-mi ;  q k + l .  , ,  q.  xqy-7a+k- l  , yi qk+mt-a-l), (5.8) 

In analogy to what has been done in the previous section, one can use the realization 
(3.8) of the algebra U,(sl(n + 3)) to get a generating relation for the q-lauricella 
function. Consider the operator EP(a&=) [e~(bi&"Y~)ep(ci&apj"Biy)] e,(d&,), whose 
matrix elements also involve the @D function. Its action on the monomials (3.7) can be 
expressed in terms of a n + l & ~  hypergeometric function, by using the summation formulae 
(4.11) and (4.29). This allows deriving the following generating formula: 

k=-m 

(5.9) 

As in the case of the q-Appell function, further identities involving the q-Lauricella 
function can be derived by using a representation for the algebra Uq(si(n + 3)) in which 
these functions appear as basis vectors. A complete description of this representation in 
terms of quantum Grassmannians has been given in 1411. A similar model for &(sZ(n + 3)) 
can also be derived using the algebraic approach to the basic Lauricella functions described 
above. As an illustration, we shall derive below representatives of the elements ke, E,, &pi? 
and &@ay taking the matrix elements (5.2) as basis vectors. 

Using the relations (3.3), it is easy to check that k,&ak;l = q&", ke&*kil = q-'&,, 
k.EUfl<Yk;' = q&'"" and k,&piYkil = &piy .  From the definition (5.1), it then follows that 

k,U(a,bi,ci,d)k;' = U(qa,qbi,ci,q-'d). 

Acting with both sides of this formula on fmp,y one gets 

(5.10) 
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where Ta = G, Th 
other words, the operator 

Gs-t and Udp,&z, bi, ci, d)  are the mahix elements in (5.2). In 

&'.P;)(&) = qdT,-' TLI Td (5.12)  

acting on the basis functions 

f$;"'(a,biTci,d) = Uc+p,,apj(u,bisci,4 (5.13) 

depending paramebically on U', ,¶I and y .  represents the element ku of U9(sl(n + 3)). 
Analogously, recalling (2.&), one has 

0: U(U,  bi,Ci,d) = U(U,  b i , c i , d ) & , k ~ ' .  (5.14) 

Using the result (5.11). one immediately finds 

*("'.Bj,(&) = q " t l T - l p T  
II b d D d + .  

Similarly, from (2.6b) and I&=, @'] = 0, one derives 

,(d.fij)(&kY) = -qD-.  
c 

(5.15) 

(5.16) 

To get ~ ( ~ ' ~ ~ i ) ( E ' ~ ~ y ) ,  one first acts with D: on U(u,  bi, ci. d)  to get 

D i  U(u ,  bi, cis d) = U(u,  bi, ci, d)  E9(-d&.k;') P p c v  e,(d&&') (5.17) 

and then shows that 

E,(-d&&')&"piY e,(d&&') = &'pdY - (d/q)&p;Y k;' (5.18) 

with the help of the following relation: 

where 

[X,Ylo=Y ~ X . Y I , ~ I = ~ " X [ X , Y ] . - [ X , Y I , X  f o r n = l , 2  ,... . 
A! the end one finds 

?T(""~'(@y) = D: - q4dTaTbc-' 0;. 

(5.19) 

(5.20) 

Let us now act with the operators (5.15), (5.16) and (5.20) on the basis vectors (5.13); 
recalling the explicit expression for the matrix elements U~p~..p(u, bi, ci, d )  in terms of the 
q-huricella function, one obtains the following identities: 

(5.21) 
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where Tz = T,,T,, . . . Tzn, and QD stands for QD(a; bl, . . . , b,; c; q ;  ZI, . . . , zn), while 
@D(c/q) for @,(a; bl, . . . ~ b.; c /q;  q ;  z1,. . . , zn), and so on. These relations together 
Wi th  

(1 - a TI)  QD = (1 - a )  QD(qa) 

an immediate consequence of the definition (2.10). imply the q-difference equations (2.1 1). 
A simple generating formula for the q-Lanricella function can now be derived using 

a@n (5.15) and (5.16). following the same steps that led us to (4.26). Take the operator 
U(a', b,!. c,!, d') and set a' = 0, bi = 0, i = 1, . . . , n - 1. By means of the summation 
formula (4.24) and 

(5.23) 
= q-"'"-')/2(-ci/c,!; q)" (ci)" for Ic,!/cil < 1 

and of the transformation relation (2.12), the action of U ( 0 ,  0, ci, d') on the basis functions 
(5.13) can be expressed in tenus of a q-hypergeomehic function *+lA, provided d' = -qd 
and c,! = -ci/q. This result together with (5.2) and (5.5), when inserted in 

* (U'.&, - OK', 0, - C i / q .  -qd) fupjv  - ua,,w,z~j(a, bi, Ci, 4 &~,,~g.(Os 0, - C i / q ,  - 4 4  (5.24) 
EF' 

gives the following relation 

x QD 0 ;  b,  qk-h;  qa-m+l. 9 4 ;  x .  Y i )  (5.25) ( 
with a and 8,  i = 1, . . . , n - 1, positive integers. 

Finally, let us stress that the relations we have derived are just a few examples of the 
many identities that can be obtained from the quantum algebra interpretation of the q-Appell 
and q-Lauricella functions that we have described. Our aim was to show the usefulness and 
simplicity of this approach, without claiming to be exhaustive. 
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