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Abstract. Generalizations 1o a base g of the Appell and Lauricella hypergeometric functions
are studied within the framework of the representation theory of quantum algebras of type A,.
This allows deriving various identities and formulae involving these g-functions.

1. Introduction

Quantum algebras and groups constitute very powerful algebraic tools for studying many
physical models, in particular those that involve discrete space and/or time. The literature
dealing with their applications is by now very large, and ranges over many different fields,
from mathematical physics to condensed matter physics.||

More specifically, quantum algebras are deformations with a complex parameter g
of the universal enveloping algebras of classical Lie algebras [4,5]. Like their classical
counterparts, they often arise in physical models as symmetry algebras, simplifying the
analysis of the dynamics of these models and allowing in many instances for a complete
solution [6-8].

It is well known that the representation theory of the classical Lie algebras gives
a unifying algebraic setting for many special functions of mathematical physics [9-12].
Quantum algebras play a similar role for generalizations to a base ¢ of these functions, the
so~called g-special functions [13]. Though unfamiliar to most physicists before the advent of
quantum groups, the g-functions are now playing a fundamental role in the study of quantum
algebra symmetries, In fact, these functions naturally arise whenever such structures are
relevant to the description of physical systems; in particular, n-point correlation functions
can be expressed in terms of g-hypergeometric functions in n-variables [14-18].

Motivated by this, here we shall study multivariable g-special functions within the
guantum algebra framework. We shall provide an interpretation of these functions along the
lines developed in the case of the single variable basic hypergeometric functions [19-35].
Using this approach, various identities and properties for these functions will be derived.

After a section where the notations and definitions used throughout the paper are
introduced, we present in section 3 results on the representation theory of U (sl(n + 3)).
In the following section, we study a g-generalization of the Appell function, a two-variable
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version of the Heine hypergeometric series, and its connection with the quantum algebra
U, (51(5)). The g-Appell functions appear both in matrix elements of certain operators in
U, (sI(5)) and also as basis vectors, in specific irreducible representations of subalgebras of
U, (sI(5)). Section 5 is devoted to an n-variable generalization of the Heine hypergeometric
series, the extension to a base ¢ of the Lauricella function Fp. In analogy to the g-Appell
series, this function proves to be connected with the representation theory of U, (s{(n + 3)).
Only the results are given in this case, since the derivations are similar to those involving
the g-Appell functions.

Let us stress that the techniques described here are essentially independent of
convergence criteria. The relations and formulae involving the g-Appell and g-Lauricella
functions obtained in sections 4 and 5 should be looked at as identities between formal
power series; it could happen that these converge over a finite radius or only when the
series terminate,

2. Notation

We start with a few formulae in g-analysis that will be used in the following. In our
approach, an important role is played by the following two g-exponential functions [13]:

ad 1 1
g,(2) = — = — for |z] <1 2.1a
q( ) g(q;'?)n (Z;Q)m l2l ( )
. oo q%n(n-—l) ) o lb
2} = " =(-z .
() g(m, (- P (2.16)
where, for ¢ and « arbitrary complex numbers, {(@; q), stands for the g-shifted factorial
(@; Doo
a; =— 2.2
(@; 9o @a% D) (2.2)
with
o0
@ Qo= [[(1—agh  forlgl <. (2.3)
k=0

Note that e,(z) E,(~z) = 1, and that lim., - €,(z(1 — )) = limy1- E,(z(1 — g)) = €.
We shall denote by T, the g-dilatation operator which acts as

T ¢(2) = p(q2) (2.4)
on functions of the variable z; out of it, the g-difference operators

D} =z'1-T) (2.5a}
Dy =z7'1-171 (2.5b)

4

are constructed. Observe that sD} — d/dz and a=e D7 — d/dz as g > 1. Notice
also that the g-exponentials obey
D e,(Az) = heg(Az) (2.6a)

D7 E;(Az) = —q AE,(A2) (2.6b)
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with A a complex parameter.
The basic hypergeometric sertes (¢; is defined [13] by

aln“b---;“r.

r¢s(0h02=---var§bls~--;bs§5!,3)Er¢s[ ,q,z:l
by,..., b
2.7

2 (a1 gnlazs gdn - .. (ar; @n T L
—1yrg 2
= (g D13 q) .- (bss @ [( e ] z

withg £ 0whenr >s5-+1. Since (@™, q)n= D forn=m+1,m+2,..., the series ,¢;
terminates if one of the numerator parameters {g;} is of the form g™ with m =0, 1,2...
and g # 0. By the ratio test, when 0 < [g[ < I, the ,¢; series converges absolutely for all
zifr < s, and for |z] < 1 if r = s+ 1. The particular case r = 2 and 5 = 1 gives the
Heine g-series

@ qhbi gl

(@ Dn(C: Pn for |z] < 1 @8)

wi(a, by g.z) = Z

n=0

which in the limit ¢ — 1~ reduces to the standard Gauss hypergeometric series,

In the following we shall consider multivariable versions of the functions defined in
(2.7) and (2.8). One of the simplest generalizations of the Heine g-series is the basic
Appell series o [36]:

o
; (a; Q)m-}n(b; Q)m(b’; ‘?)n

$pla;b,b'5c;9:x, =§ myn

D(@: b, 036 4 %, ) © Dreen @ D@3 D

m.n=0

2.9

For 0 < |g| < 1, it converges absolutely when |x| < 1 and |y} < 1.
The generalization to nz-variables of (2.9) gives the basic Lauricella function ¢ [37,38]:

q>D(a;bli '--sbn;c;q;Zh-'-yzn)
@by @my G Py g m
Bz g (2.10)
Z € DuG@ Dm @ Dy "

MLty 20

where M = my +m»+ ...+ m,. Also in this case the series converges absolutely when
|zl < 1,i =1,2,...,n, for 0 < |g| < 1. In the following we shall fix g to be in this range.
It is easy to check that the g-Lauricella function (2,10) satisfies the following g-difference
equations

[(1 —eT)DE ~ (1 —aT)(1 - b;z;,.)] ®p=0 forl<i<n
@.11)
[(1 —bT,)DF — (1 - bjTZJ)D;‘;J $p=0 forl<i<j<n

whete T, = T, T,,-.-T;,. Also notice that $p can be expressed in terms of a 1
g-hypergeometric function [37,38]:

Dpla; b b gt 2e) =

(@ @)oo T° [(iji»‘q)oo] [c{a, T s In :l
G oo b @0 1L bz bz OO (2.12)

We shall see that the series (2.10) arises in the representation theory of the quantum
algebra Uy (si(n + 3)).
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3. The quantum algebra L4 (sl(n+3))

The quantum universal enveloping algebra Li;(sl(n + 3)) is the Hopf algebra generated by
the elements &;, &k 1eiand fi,i=1,2,...,n+2, satisfying the defining relations {5]

k; k'_! = k]‘l k=1 k; kj = kj k; kie; kl_l - qau e
k7?1 I <
[e"’m=5"-";l"ﬁ"_,;_—1/2 ki fiki =q™ fj

together with the Serre-like relations
lei, g1 = 0 =1fi, il for |i = jl > 1
e —~ @ +q e e e temel =0 (3.2)
fFra—@ 4™ fifim i+ fim fF=0

where a;; is the Cartan matrix of type An 12, witha; = 2, 41 = —1 and g;; = O otherwise.
Iis irreducible representations can by studied by introducing the following abstract operators
£ acting on the basis functions f, s,,.. 8.y = fa.z.y. With @, 81, ..., Bn, ¥ complex numbers
{39,400

E fupy = (1 =q" ™) fazrpy
E fa.ﬂ;.y = (I - ga—l) fa—l.ﬁ.-.y
Ex fa.ﬁ,.y =(1- qﬁt) fﬂ'.ﬁk.}"

gﬂx ft!-ﬂ..y =(1- qy—ﬂ) fa’.f?t.y

& fupy =1 =" fappn
& fapy == g" ™) Jaip-1
Lt fd.ﬂ..y =(1- qﬂ_r) Jat1,8,y+1
guy far.ﬂ..y =(1- qar—l) fa-l.ﬁ..y-l

ERY fopy = =™ F3 o (3.3)
Egiy fapy = (- qy—ﬂ) Jo Byt
55: Faiy = (=% faporbtle Bty

£oBey Jagy =01- g™) Jet fuy+1

Eapiy fapiy = (1 — ) —1Ay-1
ko fog.y = 4% fupy

kﬂg fa.ﬁ.-,y = q& ﬁiuﬂi-}"

ky fapy = q” fapy

where 8 = Y oBe i =Ft. ... B+ 1,....Brand B = Pr,.... B — 1,..., B For
simplicity, let us also define

kg = kg kp -k, (34)
so that

ks fupy = 4° Fupiy- (3.5)
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The operators £ generate the quantum algebra L, (si(n + 3)). Indeed, with the following
redefinitions:

k;l/4 k;l?/4 k§/4 k‘;m
Y S - 4 e — =l =1 -1 2
Cnt2 = g /Z —g-1/2 friz = qi— g7 & ki =q Kk kg K,
—~3/4 , —3/4 . 3/4 174 174 , —1/4
oy = 2 Fp Ky, For1 = b kg by por bty = g kg kg k!
4 qug — q_1/2 ay n+l1 q]/z — q_]_/z n+1 o B v
k;/.t k;m ké“ k51/4 (.6
i — Bn —_—— —_ -1
n = g2 — q-1/2 g5 Jo= ql,l: —g-12 Sﬂﬁs}’ kn =g ka kﬁn
—1/4 ,—1/4 —1/4 ,—1/4
o = q1f4 kﬁ,‘ / % .+{ Bi fi= 41/4]‘5: ! kﬁwi Sﬂi-tul b=k &1
T T g2 Burt T g —q- 12 i) -

i=1...,n=1

the relations (3.1) and (3.2} are verified. The operators £ listed in (3.3) and not appearing
in (3.6) correspond to non-simple roots.

Let (ao,ﬁf’, ¥", i = 1,2,...,n, be fixed complex numbers, not integers, and let
o =ao®+m B = B+n;, vy = y®+k, where (m,n;, k) run over all integers. Then
the basis functions {fag ,} and the operators £ in (3.3) define an infinite-dimensional
irreducible representation of Uy (sf(n 4+ 3)). In the following sections we shall see how this
representation gives a natural algebraic setting for the g-Appell and g-Lauricella functions.

Let us finally point out that it is easy to construct an explicit realization of the above

representation, using 7 + 2 complex variables: (x, y;,z),i =1,2,...,n. In this model, the
basis functions are
fa.ﬁ,,y(x: YVivoves Yas Z) =x“}'1ﬁl "'}’f"zy (3»7)

while the elements £ are expressed in terms of g-difference operators

£ =x(1-g'T' L) E=Z(-g7'T)

1 ;
& =y (1-Ty) sﬂﬁg(l—a‘n)
- 1 e
& =z(1-T, T, ") & =-(0-q '771 )
Y =x2(1-BTY) o= (-g'T) 38
i
£ = yz(1-T,) Epy =5 (1= T, 1)
1 i}
EPY = xyz (1 —Tp)  Eapy = P (1—q77h)
e =% -1, ky =T,
¥

kg =Ty, ky=T,
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where T, = 7,,T,, --T,,. One can easily check that the operators (3.8) acting on the
monomials (3,7) verify the relations (3.3).

4. The basic Appell function and 14, (sl(5))

In this section we shall fix # = 2 and consider the irreducible representation (3.3) for
U, (si(5)). The algebraic interpretation of the g-Appell function ®pla: b,b'5¢;9;x,3)
that we shall present is based on a suitable subalgebra of 4, (s{(5)). Let us consider the
following operators: £%, &, £, £%. Together with the elements k, and k,, they satisfy
the following relations:

[£%, £ =g~ (1 — )k k, — ko) Ear EY=q7 11 — @)k EY

[£%, 7] = ¢~ (1 — @)k ky £ [£%,&%]=0

(£, E¥]= 0 [£re)1=0

ko £% =g E% Iy ko Eu =g Ex ke @.1)
ko £ = E¥ ky ko £ = q E ky

k, £ =E%k, ky Eq = Enk,

k,EY =q &k, k, £ =g &%k,

Other choices of subalgebras are possible; a different one will be presented in the next

section.
In the completion of 14, (s{(5)), let us now consider the following operator:

U(a,b,c,d) = E(a £ Eg(b 7 k) Ey(c £ e,(d £). (4.2)

Notice that in the limit ¢ — 17, this operator reduces to an element of the group SL(5).
The matrix elements of U (a, b, ¢, d) on the basis functions { fu, .4, } of the representation
{3.3) can be computed explicitly using the definition (2.1) and various identities involving
g-shifted factorials. They are defined in the usual way:

Ula,b,c,d) fupopry = Y fb1.8sy Uy ay (@, b, c,d) (4.3)
oy

where (¢, @) € a®+Z, (¥, ¥) € y°+Z, as discussed in the previous section. Notice that the
operators £%, &, £Y, £27 do not change the indices (8, B;) of the basis vectors f g,y
This means that the matrix elements of U{a, b, ¢, d) are non-zero only for 8] = §; and
B3 = pa; for simplicity, we have suppressed the fixed indices (81, B) in their definition.
The explicit computation gives

@'=P —p=1420)/2 (9; a1 (4 Dp+p—y Y'Y de
(@5 D1 (@ Dprpo-y @ Dy-y @ Da-w

x @p(g'1g”%, g7 7 g+ g; —ad g+ V', cd )
ify' -y 20, a~a 20 (4.4a)

Uayray(a, b, c, dy=gq
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Uwy'ay@, b, c,d) = q(d’_a)(“‘_“—|J/2+(J’—)”)(Y—V'+d'-ﬂf)
(9 @y—e-1 (@ Dppmy XYY ¥
@ Dy-w-1 @ Dpapr-y @5 Domary—y &5 @y-y
X ¢'u(qy_“: g™, g7 g Y g qd g Y, —-q“'ab/c)
ify' -y 20 o —a20. (4.4b)

This establishes in a simple way the connection between the basic Appell function &p and
Uy (s1(5)). Notice that the two formulae above are valid irrespective of the sign of o’ — o,
thanks to the following limiting formula ( and n positive integers):

—n(n+1)/2m—n (—y)" @ Dm ) P
(43 @)m—n
x ®pbg™ " aq™, g7 ¢" " g x, " x /). 4.5)

Other combinations of g-exponentials involving the generators £%, £,, £7, £ can also
be used. Of particular interest is

U, b,c,d)y= E (d &) eg(cE% ) eg(bEV ky) eg(a E). (4.6)
The mafrix elements of U (a,b, ¢, d) in the representation (3.3) are given by

@D ®pla; b,g™ ¢ ™ g x,y) =g
) —m

f_
(="M or—o'~1)/ 24y’ ~y) & 9)a-1 @ Dp1p—y Y 4o
@ Der-1 (@ Dpr+s-y & D=y @5 Do
X ¢p(€1a;qa_y“,q}'_}'l;qa_“z'*'l'f—adq""‘“"" —q”'"""“’cd/b)
ify'—-y20, a—-a" 20 (4.7a)

(@ Dy-a-1 (@ Dpipp—y a2V

(g; Q)r’—a‘ 1 (q' Q)ﬂ1+ﬂ;—y’ (2 Q)a’-——a+y—y’ (g: Q)y'—y

x (pD(qa' ¥+, q” qr Y. i q ’—u+y—:~"+l;q; _adqy’—a'—l’qy’ab/c)
ify' -~y 20, ¢/ —a20. (4.7b)

A biorthogonality relation involving two g-Appell functions can be derived by
combining the results (4.4) and (4.7). Recalling that ¢,(z) E,(—z) = 1, one sees that

Ula,b,c,d)U(—a, —b, —¢, —d) = 1 (4.8)
or alternatively, acting on the basis vector fyg, ., that
Z Ua’y’.a_y'(a, b,c, d) ﬁﬁ,dy(_as —b,—¢,=d) = 30:"--&.0 ay'-—-y.O 4.9

i}a'y',ay (a.b,c,d)y=g¢q

ﬁa’y'.ay(a; be,d)=

w1tha:eoz°+Zyey+Z and ' =¥ 2 0, ¥ —y 2> 0. Substituting for the
matrix elements Uy zp(a, b, ¢,d) and Usp oy (—a, —b, —c, —d), the expressions (4.4a)
and (4.7a), after some simplifications and redefinitions, one arrives at the following formula
F-yv=meZ', a-u=kel)

o' —a.
5‘1"_”‘0 a}"_y 0= Z q(m-:-k)(a—u Y (q y Q)m (q ) G')k

@D (@ gk
w ¢D(q1—d;qyw,qy—y+m qcz--a -k-s-l,q xq y)

x ®p(q® q* v+, g™, g+ g qu'-—a’—-a+m+.i:’qu+k—a)- (4.10)

o
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Another relation involving the series ®p can be obtained by using the model (3.8) for
the representation (3.3). In the present case, the basis functions f.g s, are expressed by

the monomials x"yf' yf’z”, while the operators £%, &, £, £%" and k, are as in (3.8), with
Ty = T,,T,. Let us now act directly with the operator U{a, b, ¢, d) on x“yf‘yf’z?’. By
using the definition (2.1) of the g-exponentials and with the help of Heine's g-binomial
theorem

@™ D, (2875 Deo
= (s (@D

= (2¢7"; Qa lzl <1, {gl<t1l

(4.11)
one finds that

Ula, b, c,d) x2yP yPz7 = x*yPy& 0¥ (—ax; @)y oy (—x26 Dpiapry

oC l—x, - y—u-1.
< Zq_m(m_,l)/z(q 3 @m ( ‘ax‘? ' Dm (-—-q“_ld/x)m
oo (@3 m

% 2¢l ( —ax q}'—ﬂ-l-m—l’ ql’—ﬁl"ﬂ!; —xz¢ 4, —bz qd"l',ﬂ]"l"h'-}‘"m). (412)

To proceed further, we use the following integral representation for the series a¢:

(a, b; q)oo( i ) (¢°*1, ¢q%; oo ®(—2)
abcg,7)=——— | — - ds 4.13
21 T = o g 00 \27 ) Je (@, b2 8)es sy A1)
where we have used the standard notation
(@1,82, .25 803 @)a = (@1, @)e (@25 @) -+ (@3 G)ae (4.14)

and where C is a suitable generalization of Barnes’ contour in the complex s-plane (for
details, see [13]). By exchanging the sum with the integral and using once more equation
(4.11), one finally arrives at the formula
(@"PA, —ax; @)oo

(—x2cgP*AY, g )oo

as f @, —xzeq’; P m

2 ) Jc (g ~Pimh, —axgstr—ol; g)os sin(ms)

5% (bZ q&-l'ﬂj'l'ﬂz_y)" 2¢0 (ql—a' —ax q.i'+y—&—!; q, _qit—s—ld/x) ds. (415)
Since the series 2¢(a, b; g,z) does not converge, unless it terminates or z = 0, the
action of U(a, b,c,d) on x"yf ! yf’z" is ill-defined in this model, unless « is an integer
greater than unity. Nevertheless, by proceeding formally one can obtain an interesting
identity for the g-hypergeometric series ®p. Recall the definition (4.3) for the mamix
elements of U (a, b, ¢, d); in this formula insert (4.15) in the LHS, and substitute (4.4a) for

Uyyay(a, b, ¢, d) in the RHES. With suitable manipulations and obvious redefinitions, one
finally ends up with the following relation involving the g-Appell function:

(¢, —¥/2 Qoo (L)
(—xt/qz,4; @) \27
@, —¢" ' xtc/2; @)oo m(—1)
¢ (cq®, —g*~\by/z; q)ee sin(ms)
— i i q-—k(k+m-l)/2 (@ g (6 @Im ey
o Sy (@ @ (@ Pm

X <I>n(aq": g™, bg™* " g1 x, yq‘"‘""). (4.16)

Ula, b, ¢, d) x®yPyliz? = x¥yftyfrzy

2w0(a, —¢" by /2 4,2 7) ds
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Further identities for the function ®p can be obtained by noting that the matrix
elements Uyryr oy (a, b, €, d) and Uy o (8, b, ¢, d) themselves provide models for U, (s1(5))
modules. Indeed, one can check that the following g-difference operators in the four

complex variables a, b, ¢ and d, depending parametrically on the complex numbers o,
!

4

7@V () = qﬂ'n"‘ Tc_l T, (4.17a)
n.(a'.r')(ky) — qr'n—l Tc"'l (4.17h)
x(a'.}"')(ga) — D: {4.17¢)
7 INEYy = =g T, Dy (4.17d)
g riEgRry = —4 D7 —d 7! D, (4.17e)

7@E =~ D; - W) (¢" LT T - ¢ T, T;l) +¢®bT DS (@17f)
acting on the basis functions
@'y} _
fepipoy (@ by 0, d) = Unyr ay (@, b, ¢, d) (4.18)

verify the algebra (4.1). (For a hint on how the formulae (4.17) are obtained, see [26] and
the following section.} From this realization one can get useful formulae for the function
®pla; b, b ¢, 4;x,y). In fact, by acting with the operators (4.17¢—f) on (4.18), one
immediately derives

(1—(c/g) T,) ®p = (1 — ¢/q) ®ple/q)
(1 -¥'Ty) ®p = (1-b) ®plgd)

% Po(gbg0) 4.19)
[(qb’/a)D; + (/@) TV + (g/a) T Dy — (bb’/c)] ®p
_ (1 =b¥/e)(1 —c/a)
(1=¢)
where $p stands for ®pla; b, b'; ¢; g; x, ¥), and $plga) for Pplag; b, V'; c; g; x, ), and

so on. Further relations can be obtained from the explicit definition (2.9) of the series &p,
or by starting with a subalgebra of U, (s/(5)) different from that of (4.1):

@D; + T, =) I, @p =

®plgc)

(1-aT.T)) ®p = (1 —a) Ppga)

(1-b5T;) ®p = (1 —b) Pplgh)

(1-a)l-b)
(1-¢)

[0 - /@) TT) - ®x/a)(t - a T:T)| @b = (1 = ¢/a) ®0(b/g, /)

Dl dp = ®plga, gb, qc)

(4.20)

[0 - /) T:Ty) - /)1 = b BTy - /)L - ¥ T 7T @
= (1= c/a) Bp(a/q).
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These relations together with those in (4.19) constitute a complete set of ‘contiguity’ relations
for the g-Appell functions. In particular, it follows that this function satisfies the following
second-order g-difference equations:

[(1 ~eLT)Df — (1 ~aT.T)(1— bTx)] Gpla; b, bseiq;x,y)=0
[(1 - chTyJD;' - (1-al.T)(1 - b’Tx)] Opla; b, b0, x, )= 0 4.21)
[(1 ~bT)Df — (11 T}.)D;'] ®pla: b, b c; q; %, y) = 0.

The four-variable model (4,17), (4.18) can be further used to get generating and addition
formulae for the g-Appell functions., From the general definition (4.3), one can write,
recalling (4.18),

U@, v, d) flana b,e,d) = Unypzy(a b,c,d) U oy @, b, ¢, d) (4.22)
Zy

where the modcl-indepcndent matrix elements 55,-,7#,, (@, ¥, c,d) are still given by (4.7)
adFead®+Z, 7€y +Z,7—y 20,y —7 > 0. To derive useful identities from
(4.22), one needs to evaluate the LHS of this equation, i.e. to compute directly the action
of U(a ¥, ¢, d") on the basis functions (4.18), using the realization (4.17).

We shall start by considering the simple case in which only the parameter 4’ is non-
vanishing, U (d"y = E,(d’ £&). One can check that, in this case, the only non-zero matrix
elements are

_ ; ) . _ dr)am-a'
Uy 4} = gla~oMa—a'=1)/2 G e—a' 20 423
ayay(@) =4 (@ Dot (33 Da—v ~ o

The action of E,(d' DJ) on f@¥(a,b,c,d) can be computed by using the following
summation formula (|d'/d| < 1):

Eg(d' D}yd" = d" (—d'/d; g)n. (4.24)
For d' = —qd, this action can be rewritten again in terms of a ®p:

o) e —r=1t2y2 3 D=1 (@ Dty
Ey(—qd Df) f5 7 (a,b,c,d)=¢q
g oB By (0 Der-1 (@3 D48y

v'-y , P ’ '
b 4o <I>D(q1"°‘ sq” ™, g0 g5 —ad ¥ YV, Cd/b)-
(4.25)

x —
(q;Q)r'—y

Inserting this result, together with the explicit expressions (4.4a) and (4.23) for the matrix
clements Uy mp(a, b, ¢, d) and U,,,, sy (—dq) in (4.22), with obvious manipulations and
redefinitions one finally obtains

(¢ 9)a Po(a; b, b3 01q7x,y) = 2( H" ’”"”*"’2[ ] Opla; b, b3 4™ 43 x, )
m=0

(4.26)
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where

o (4; 9
I (L U S 4.27
[ﬁ:L (9 9)p (@ Da—p @20

is the g-binomial symbol.

To get an addition formula from (4.22), one needs to consider the general case where
all the parameters o', &', ¢’ and &’ are non-zero. The action of U(a',b',¢',d’) on
F&Y)a, b, c,d) can not be summed in general, but only when the following conditions
are satisfied: b’ = —¢'d'/q, d' = —gd, and b = ed/q. In this case one can prove that

U ’ e -1 (@5 D
Ua',cd, ¢, —qd 'y} a,cd/g,c,d) = g¥ V=1
( 99 Jupiewy (@ 0210, 4 = 0 (@ Dot

(@ Dp+ao—y (/5 @ly-y de=% (/dyr'=?
(@ Dp+ta—y G Q)y—y

X z¢o(¢?‘”, gt q,0'd f?]'"“_l)

X ®p (q““'; g" ™, 9" 0,5 ~ad g7, q)- (4.28)

In deriving this result, use has been made of the g-binomial summation formula (4.11) and
of the g-Gauss’ summation theorem:

(c/a,c/b qloo

(c,c/ab; gl (4.29)

2¢(a, b; ¢; q,c/ab) =

With the help of the explicit expressions (4.4a) and (4.7a) of the matrix elements
Unpemp(at, cdfq, c,d) and Usp ey (@', c'd, ¢’, —qd), after suitable operations, equation
(4.22) finally becomes

(@ Dame (28777 ‘I)r’-}'2¢0(qa» gl g, y/q) ¢u(q“°"; g’ . g0 x, q)

_ i i q(m-I-k)(a—a’-H)(qymyr;Q)m @D
=0 koo @ Dm (g D

% @D(ql—a': qy’-a', qr—r'+m; qax-a’—k+l; g; xqm’q)

m+k, qm+k—uz+1). (4.30)

x ®p(g% ¢° 7,4 4" 45 yq

This is a simple addition formula for the g-Appell function. Concerning the convergence
of (4.30), the remarks made after (4.15) also apply; in particular, for 2¢h to be convergent,
« must be a negative integer.

5. The basic Lauricella function and L, (sl{(n+3))

‘We now generalize the considerations of the previous section to the case of g-hypergeometric
series in many variables. Though the strategy is essentially unchanged, the computations
are much more involved. For this reason, we shall limit the exposition to the results giving
only indications on how these are derived.
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The starting point is the quantum algebra L4, (sI(n + 3)) in the realization given in (3.3).
In this case also, we shall concentrate on a suitable subalgebra generated by the elements
£, Ey, EBY EPY Ky and kg, 1 =1,2,...,n— L.

In the completion of U, (s/(n + 3}), consider then the following operator:

U(ﬂ,b], --wbn—lrclo ...,Cn_l,d)

n—1 n—t
= eg@&[] [e,, ®; z'*ﬁﬁ’)] I1 I:Eq(cj sﬁn’)] e (d £k 6.0
Fe=1 j=1

which in the limit ¢ — 1~ becomes an element of the group SL(n + 3). In the following
we shall use a shorthand notation and simply write 7 (a, b;, ¢;, &) for the RHS of (5.1). The
matrix elements of U(a, b;, ¢;, d) with respect to the basis vectors { fusy } can be computed
using (3.3). These are zero, unless the new index ¥’ is equal to ¥ + Zj (,6} ~ B;); for this
reason we shall simply denote them as Uwgr o5 (a, by, ¢;, d), the index y being understood.
Explicitly one finds (8/ — 8 > 0)

. —
(& —e) (e +a--1)/2 (CH ) P o

(@ o1 (5 Qo

a=i .ﬂ;‘_‘sf
x [qw;—mcﬂ;~ﬂ;—1>/z(qﬁ,-; Dpp, __J...._]
,.Ul T (g 9g-p,

x ®p(q"; g7 TN, gPebi; g g: —ad/q, bidc:) (5.2)

Ua'ﬁ:-“ﬂ‘i ('aT bl-i Cf * d) = q

where (o', ) € a®+Z, B, 8) € A +2Zand ¥y € Y+ Z,i=1,...,n—1L In
this expression, Ppla; b, b;; ¢; 4; x, y;) stands for the n-variable g-Lauricella function
Pplaib, &1y oo Bp=1; €93 %, Y1y 10y Ya=1)s which is thus directly connected with the
representation theory of U (sl{n + 3)). The form (5.2) of the matrix elements, though
derived under the assumption o — &’ 2 0, is valid irrespective from the sign of o — o,
thanks to the following limiting relation oz and &;, { = 1, ..., n — 1, positive integers)

Co(a;b, g7 ;¢ ™ g, ) = @ D &5 Dk

4 @)-m @ Dk
n—1
x[] [q-k,(k,+1>/z(_yj /x)k"]
=1
x ®p(bg™ ¥;aq™, a7 ¢ K gy x, ¢ x fy) (53)
where K = f;l’ k;. This relation clearly reduces to (4.5) for n = 2, Similarly, one can

check that the operator

n=1 n
Fia.br, 00, d) = By @ &ak) [ [eatc )| [] [ 2201807 Bgta £ (5:4)
i=1

j=

has the following matrix elements (8 — §; > 0)
. a n=1 Bi—B

@yt @ Dat &% I [(qﬁ;; Dpis ¢

@ Dar-1 (§; Yoo S CH) V')

j=1
x ®p (q‘": gerHy ghihl; gumal . 4.

ﬁu’,ﬂf.aﬂ, (a’ bh Ciy d) =q

—ad qy—&—u’-?.’ _qﬂ,f—ﬂ‘:‘—“l_'bid/c‘-) (5.5)
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for ¥’ = y + 3_;(8} — B;), and zero otherwise.
The operator (5.4) has been chosen in such a way that

Ula, b,,c,,d)U( a, —b;, —c;,—dy=1. (5.6)

Applying the basis vector fg, to both sides of this equation, one finds

n—1
Z w5, (0 by €6 d) Ugg o5, (—a, —bi, —ci, —d) = 8y a0 [ [ 85-p,0- 5.7
B, j=1

This gives a biorthogonality relation for the g-Lauricella function. In fact, using the explicit
expressions (5.2) and (5.5) for the matrix elements, with suitable redefinitions one gets

_a(g¥ % q) & @
o —a,0 n3ﬁ’ -8.0 = Z A q(q q)i : H[Zq J (@5 Dm, j]

oo F=1 m,=0

% ¢,D(qaz; qaz-y-l-l, q—m,-; qk+!; q;qu—h-l-k—l, v qlc+m;—u—1)_ (58)

In analogy to what has been done in the previous section, one can use the realization
(3.8) of the algebra Z{,(si(n + 3)) to get a generating relation for the g-Lauricella
function. Consider the operator E,(a€®) [Tic] [eq(5iEP7 ka)ey (c:i£%P7 Y] e, (dEy), whose
matrix elements also involve the ®p function. Its action on the monomials (3.7) can be
expressed in terms of a .1 ¢,—1 hypergeometric function, by using the summation formulae
(4.11) and (4.29), This allows deriving the following generating formula:

l—ar

(x‘q)y- (xz; q)y b ][q N 7S VIR i ]
2 @ [T} J(J’,,q)g," " Py, o, gPty T
= E q—k(k-!-l)/?.(_l/z)k(xz; q)k
k=—00

x ¢p(xzq": q* g% x2q"; q: 4", y:q"‘)- (5.9)

As in the case of the g-Appell function, further identities involving the g-Lauricella
function can be derived by using a representation for the algebra i, (sI(n + 3)) in which
these functions appear as basis vectors. A complete description of this representation in
terms of quantum Grassmannians has been given in [41]. A similar model for U, (si(n +3))
can also be derived using the algebraic approach to the basic Lauricella functions described
above. As an illustration, we shall derive below representatives of the elements kg, &, £FY
and £%4Y taking the matrix elements (5.2) as basis vectors.

Using the relations (3.3), it is easy to check that k,£%k;! = g%, k, &,k = g7'&,,
koEBYETY = g£98Y and k,ERVE;T = A7 From the definition (5.1), it then follows that

ky Ula, by, ci, dY ;Y = Ulqa, gby, ¢, g7 ). (5.10)
Acting with both sides of this formula on f,z, one gets

0T T Ty Unprapla, by, i, ) = 6% Unprapla, by, 1, d) (5.11)
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where T, = 13, Ty, - - Th,, and Upp o8(a, by, ¢;, d) are the matrix elements in (5.2). In
other words, the operator

B k) = ¢ T T T (5.12)
acting on the basis functions

w1' 1
FanP (@, bi, i, d) = Up o, (@, by, 1, d) (5.13)

depending parametrically on o, B/ and y, represents the element k, of U, (si(n + 3)).
Analogously, recalling (2.6a), one has

D} Ula, by, ci.d) = Ula, by, ci, dY E k7. (5.14)
Using the result (5.11), ane immediately finds

7 (&) = ¢ T T T D .15)
Similarly, from (2.65) and [£,, £4¥] = 0, one derives

x @B (ERYy = —q D7 (5.16)
To get 7@#D(£5:7), one first acts with Df on U(a, b;, 1, d) to get

D} Ua, by, ¢;,d) = U(a, by, ci, d) Eg(—d Exk1) E%PY ey(d EakT)  (5.17)
and then shows that

Ep(~d k1) EBY ey (d E,kY) = E°BY — (d/q) EPY k! (5.18)
with the help of the following relation:

(="
(4; Dn

E(—AX) Y e;,(0.X) = i [X,Y]n (5.19)
n=0

where
[X, Yo=Y (X, Yhi=¢g"X (X, Y], - [X, Y], X forn=12,....
At the end one finds
n @B (gebry = D;:, —gd LT D. (5.20)

Let us now act with the operators (3.15), {5.16) and (5.20} on the basis vectors (5.13);
recalling the explicit expression for the matrix elements Uy g os(a, b;, ¢i, d) in terms of the
g-Lauricella function, one obtains the following identities:

(1~ (c/q) T} &p = (1 —¢/q) Pple/q)
(1 -b: T} ®p = (1 — b;) ®plgh;)
(1 =b)(1 —c/a)
(1-¢)

(5.21)

[ -5 - /3D | @5 = ®»(abi, 4¢)
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where T; = T, T, --T,, and ®p stands for ®pla; by, ..., bn;c19:21,...,2,), while
®p(c/g) for Ppla; b,,.. Jbaiclgiq: 71, ..., 2y), and so on. These relations together
with

(1~ a)(1—b)
———— ®plga, qb;,
a-0 p(qa, qb;, q¢) 5.22)

(1-aT)®p=(1-a)Pplga)

D} op=

an immediate consequence of the definition (2.10), imply the g-difference equations (2.11).

A simple generating formula for the g-Lauricella function can now be derived using
again (5.15) and (5.16), following the same steps that led us to (4.26). Take the operator
Ua' bl,¢/,d)and seta’ = 0, b = 0,i = 1,...,n — 1. By means of the summation
formula (4.24) and

1
Y (—gcifcii @) n (5.23)
= q—n(n—l)/Z

eg(—gc; D )c =
(—ci/cis @hn ()" for |¢j /il < 1
and of the transformation relation (2.12), the action of U(0, 0, ¢}, d’) on the basis functions

(5.13) can be expressed in terms of a g-hypergeometric function ,1¢,, provided d' = —qd
and ¢; = —c;/g. This result together with (5.2) and (5.5), when inserted in

(0,0, ~ci/q. —ad) £ = Y Uypzz, @ bi, c1, d) Ugg 15,0,0, —ci/g, —qd)  (5.24)

af,
gives the following relation
L @)X oo
T
G 0, X, ¥, -.vs Y1
15] BB D2 M2 2 ' * ’ ’ 14,
x]'[[( e Or el " Br,0, ..., 0 ¢
[==] o ﬂj
= S (=g (—1)kghtD/2- ,B,k,[ ]

mgo [M]‘f;l:! Zo g

x ®p(a; b, g* P g* "+ g5 x, 1) (5.25)
with ¢ and 8;,i = 1,...,n — 1, positive integers,

Finally, let us stress that the relations we have derived are just a few examples of the
many identities that can be obtained from the quantum algebra interpretation of the g-Appell
and g-Lauricella functions that we have described. Our aim was to show the usefulness and
simplicity of this approach, without claiming to be exhaustive.
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